

CENTRE SCOLAIRE OZANAM

Internat et externat pour lycéens et étudiants - Etudes encadrées et soutien scolaire - Stages intensifs de révision 60 rue Vauban 69006 LYON 204 78 52 27 99 / Fax : 04 78 52 11 15 contact@ozanam-lyon.fr www.ozanamlyon.fr

Concours ECRICOME : Epreuve de Mathématiques (option Scientifique) : 19 avril 2021

Exercice 1

Partie 1. Etude de trois matrices

On note A, J et S les matrices de $\mathcal{M}_3(\mathbb{R})$ définies par : A

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \qquad J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad et \quad S = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

1. Vérifier que $A^3 = -3A$.

En déduire que $S_p(A) = \{0\}$.

La matrice A est-elle diagonalisable?

2. Justifier que I et S sont diagonalisables, et vérifier que SI = IS.

On admet que $Sp(S) = \{0; \sqrt{3}, -\sqrt{3}\}.$

- 3. Montrer que tout vecteur propre de *S* est vecteur propre de *J*.
- 4. En déduire qu'il existe une matrice P inversible de $\mathcal{M}_3(\mathbb{R})$ (qu'on ne demande pas de déterminer) telle que $P^{-1}SP$ et $P^{-1}JP$ soient diagonales.

Partie 2. Etude des matrices magiques

Soit $n \ge 3$. On dit qu'une matrice M de $\mathcal{M}_n(\mathbb{R})$ est **magique** quand les sommes des coefficients de chaque ligne, de chaque colonne et de chaque diagonale sont égales. Ainsi en notant :

- $M = (m_{i,j})_{1 \le i \le n}$
- pour tout i de [1, n], $\ell_i(M) = \sum_{j=1}^n m_{i,j}$
- pour tout j de [[1, n]], $c_i(M) = \sum_{i=1}^n m_{i,i}$
- $d_1(M) = \sum_{i=1}^n m_{i,i}$ et $d_2(M) = \sum_{i=1}^n m_{i,n-i+1}$

alors:

M est magique si et seulement si : $\forall (i,j) \in [1,n]^2$, $\ell_i(M) = c_i(M) = d_1(M) = d_2(M)$

Si M est une matrice magique, la valeur de ces sommes est alors notée s(M) et appelée **somme** de ma matrice M.

On note \mathcal{E}_n l'ensemble des matrices réelles magiques d'ordre n, et on admet que \mathcal{E}_n ainsi défini est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

5. Montrer que ℓ_1 est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$.

On admettra dans la suite que, pour tout i de [2, n] et pour tout j de [1, n], les applications ℓ_i , c_i , d_1 , d_2 et s sont des formes linéaires sur $\mathcal{M}_n(\mathbb{R})$.

- 6. On note \mathcal{K}_n l'ensemble des matrices \mathcal{E}_n de somme nulle. Montrer que \mathcal{K}_n est un sousespace vectoriel de \mathcal{E}_n .
- 7. Soit $M \in \mathcal{E}_n$. Montrer que tM est aussi un élément de \mathcal{E}_n et déterminer $s({}^tM)$.
- 8. Soit $M \in \mathcal{E}_n$. Montrer qu'il existe un unique réel λ tel que $M \lambda J_n \in \mathcal{K}_n$, avec :

$$J_n = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

9. Soit $M \in \mathcal{E}_n$. Montrer que $W_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ est un vecteur propre de M et préciser la valeur propre associée.

Partie 3. Etude du cas où n = 3

On se place dans cette partie dans le cas particulier où n = 3.

- 10. Vérifier que les matrices *A*, *J* et *S* définies dans la partie 1 sont magiques, et déterminer leur somme.
- 11. Montrer que pou toute matrice M de $\mathcal{M}_3(\mathbb{R})$, il existe un unique couple

$$(M_1, M_2) \in (\mathcal{M}_3(\mathbb{R}))^2$$
 tel que :

$$M = M_1 + M_2$$
 avec $\begin{cases} M_1 \text{ antisymétrique} \\ M_2 \text{ symétrique} \end{cases}$

On explicitera notamment M_1 et M_2 en fonction de M.

Soit $M \in \mathcal{K}_3$. On écrit $M = M_1 + M_2$ selon la décomposition vue en question 11.

- 12. Montrer que M_1 et M_2 appartiennent à \mathcal{K}_3 .
- 13. Montrer qu'il existe deux réels α et β tels que :

$$M_1 = \alpha A$$
 et $M_2 = \beta S$

14. En déduire une base de \mathcal{K}_3 puis montrer que (A,J,S) est une base de \mathcal{E}_3 .

On note $\Delta = \{M \in \mathcal{E}_3/P^{-1}MP \text{ est diagonale }\}$, où P est la matrice définie dans la partie 1.

Exercice 2

On considère la fonction f définie sur \mathbb{R}^2 par :

$$f: \quad \mathbb{R}^2 \to \mathbb{R}$$
$$(x,y) \mapsto (x^2 + y)e^{-(x^2 + y^2)}$$

- 1. Justifier que f est de classe C^2 sur \mathbb{R}^2 et déterminer $\partial_1 f(x, y)$ et $\partial_2 f(x, y)$ pour tout $(x, y) \in \mathbb{R}^2$.
- 2. Déterminer les points critiques de f sur \mathbb{R}^2 .

On **admettra** dans la suite que pour tout $(x, y) \in \mathbb{R}^2$, on a :

•
$$\partial_{1,1}^2 f(x,y) = 2((1-(x^2+y))(1-2x^2)-2x^2)e^{-(x^2+y^2)}$$

•
$$\partial_{2,2}^2 f(x,y) = -2(x^2 + 2y + y(1 - 2y(x^2 + y)))e^{-(x^2 + y^2)}$$

•
$$\partial_{1,2}^2 f(x,y) = -2x(1+2y(1-x^2-y))e^{-(x^2+y^2)}$$

- 3. Montrer que la hessienne de f en $\left(0,\frac{1}{\sqrt{2}}\right)$ est diagonale. La fonction f admet-elle un extremum local en $\left(0,\frac{1}{\sqrt{2}}\right)$? Si oui, de quelle nature?
- 4. Montrer que f admet un extremum local en $\left(0, \frac{-1}{\sqrt{2}}\right)$ et préciser sa nature.
- 5. Montrer que la hessienne de f en $\left(\frac{1}{\sqrt{2}},\frac{1}{2}\right)$ est la matrice $H=e^{-3/4}\begin{pmatrix} -2 & -\sqrt{2} \\ -\sqrt{2} & -3 \end{pmatrix}$. Justifier que H est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ et que ses valeurs propres sont toutes deux strictement négatives.

Qu'en déduire pour le point $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$?

6. Montrer que :

$$\forall (x,y) \in \mathbb{R}^2, 0 \leq |f(x,y)| \leq \left(\left(\max(|x|,|y|)\right)^2 + \max(|x|,|y|)\right) e^{-\left(\max(|x|,|y|)\right)^2}$$

7. En étudiant la limite en $+\infty$ de $u\mapsto (u^2+u)e^{-u^2}$, montrer qu'il existe un réel r strictement positif tel que :

$$\forall (x,y) \in \mathbb{R}^2, \max(|x|,|y|) \ge r \quad \Rightarrow \quad 0 \le |f(x,y)| \le \frac{1}{2}e^{-\frac{3}{4}}$$

- 8. Représenter l'ensemble $\mathcal{K} = \{(x,y) \in \mathbb{R}^2, \max(|x|,|y|) \le r \}$ et justifier que cet ensemble est un fermé de \mathbb{R}^2 .
- 9. Vérifier que tous les points critiques de f appartiennent à \mathcal{K} . En déduire tous les extrema globaux de f sur \mathbb{R}^2 et les points où ils sont atteints.

On cherche maintenant à étudier les extrema de la fonction f sous la contrainte $x^2 + y^2 = 1$. On a représenté sur la figure 1 ci-dessous le champ de vecteurs correspondant au gradient de f (une flèche partant du point de coordonnées (x,y) représente le vecteur $\nabla f(x,y)$), ainsi que le cercle \mathcal{C} d'équation $x^2 + y^2 = 1$.

- 10. En s'appuyant sur la figure 1, la fonction f semble-t-elle admettre un extremum sous la contrainte $x^2 + y^2 = 1$ au point de coordonnées (1,0) ? Justifier votre réponse.
- 11. Déterminer sur [-1, 1] les extrema de la fonction $g: y \mapsto 1 + y y^2$.
- 12. Déduire de la question précédente l'ensemble des points pour lesquels f admet un extremum sous la contrainte $x^2 + y^2 = 1$. Commenter ce résultat au vu de la figure 1.

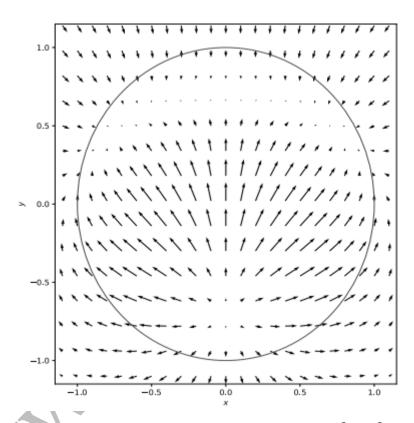


Figure 1. Gradient de f et cercle d'équation $x^2 + y^2 = 1$

Problème

Soit *a* un réel strictement positif.

On considère dans toute la suite du problème une suite $(X_n)_{n\geq 1}$ de variables aléatoires mutuellement indépendantes et identiquement distribuées, toutes définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, et suivant toutes la loi uniforme sur l'intervalle [0, a]. L'objectif de ce problème est d'étudier puis de comparer deux estimateurs de a.

Les parties 1 et 2 de ce problème sont indépendantes.

Partie 1. Estimateur du maximum de vraisemblance

On note pour tout $n \ge 1, V_n = \max(X_1, ..., X_n)$, appelé estimateur de a du maximum de vraisemblance.

On rappelle qu'en Scilab, l'instruction grand(n,m,'unf',a,b) permet d'obtenir une matrice à n lignes et m colonnes, où chaque coefficient simule une loi uniforme sur l'intervalle [a,b].

1. Ecrire une fonction d'en-tête function $V=sim_V(n,a)$ prenant en entrée un entier naturel non nul n et un réel a strictement positif, et qui renvoie une réalisation de V_n .

On a tracé ci-dessous cinq réalisations mutuellement indépendantes de $(V_1, V_2, ..., V_{100})$ dans le cas où $\alpha=1$.

2. A partir de ce graphique, que peut-on conjecturer sur l'estimateur V_n ?

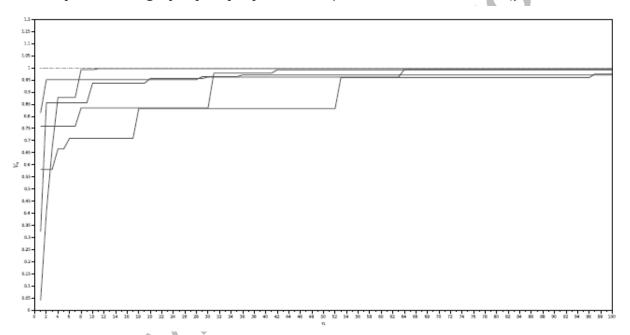


Figure 2. Cinq évolutions de $(V_1, V_2, ..., V_{100})$ pour a = 1

Soit $n \in \mathbb{N}^*$.

- 3. Rappeler l'expression de la fonction de répartition de X_1 , suivant la loi uniforme $\mathcal{U}([0,a])$.
- 4. Déterminer la fonction de répartition F_n de V_n .
- 5. En déduire que V_n est une variable aléatoire à densité et donner une densité de V_n .
- 6. Soit $n \in \mathbb{N}^*$. Justifier que V_n admet une espérance et déterminer l'espérance de V_n . L'estimateur V_n est-il sans biais ?
- 7. Soit $\varepsilon > 0$ et soit $n \in \mathbb{N}^*$. Exprimer $\mathbb{P}(|V_n a| \ge \varepsilon)$ en fonction de F_n , de a et de ε . L'estimateur V_n est-il convergent ?
- 8. Soit $n \in \mathbb{N}^*$. Pour tout réel t, exprimer $\mathbb{P}(n(a V_n) \le t)$ à l'aide de F_n .

- 9. En déduire que la suite $(n(a V_n))_{n \ge 1}$ converge en loi vers une variable aléatoire dont on identifiera la loi et son(ses) paramètre(s).
- 10. Soit $\alpha \in]0,1[$. Déterminer à partir de la question précédente un intervalle de confiance asymptotique de niveau de confiance $1-\alpha$ pour le paramètre a, construit à l'aide de V_n .

Soit $n \in \mathbb{N}^*$

- 11. Montrer que V_n admet un moment d'ordre 2, que l'on déterminera.
- 12. Montrer que le risque quadratique de V_n vaut :

$$\frac{2a^2}{(n+1)(n+2)}.$$

Quel résultat précédemment établi cela permet-il de retrouver?

Partie 2. Méthode des moments

Pour un entier $n \ge 1$, on note \overline{X}_n la moyenne empirique de l'échantillon $(X_1, ..., X_n)$, c'est-à-dire

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

On note $M_n=2\overline{X}_n$, appelé estimateur de a par la méthode des moments.

- 13. Ecrire une fonction d'en-tête function $y=sim_M(n,a)$ qui, prenant en entrée un entier naturel non nul n et le réel a>0, renvoie une réalisation de la variable aléatoire M_n .
- 14. Déterminer l'espérance et la variance de \overline{X}_n . En déduire que M_n est un estimateur sans biais
- 15. Déterminer le risque quadratique de M_n . Cet estimateur est-il convergent ?
- 16. Justifier que la suite $\left(\sqrt{n}(M_n-a)\right)_{n\geq 1}$ converge en loi vers une variable aléatoire dont on précisera la loi et le(s) paramètre(s).

Soit $\alpha \in]0,1[$.

17. Déduire de la question précédente un intervalle de confiance asymptotique de niveau de confiance $1-\alpha$ pour le paramètre a, construit sur M_n .

Quel intervalle de confiance vous semble meilleur entre ce dernier et celui déterminé à la question 10 ?

18. Comparer le risque quadratique de M_n à celui de V_n , obtenu `a la question 12. Commenter ce résultat `a l'aide de la figure 3 ci dessous :

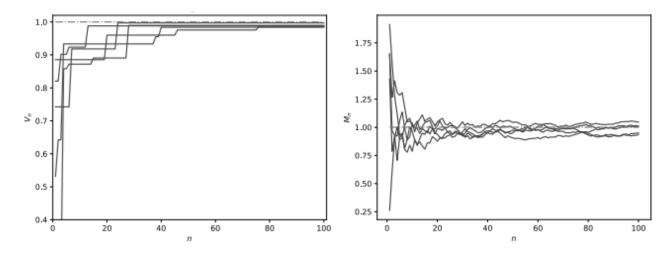


Figure 3. Cinq évolutions de $(V_1, V_2, ..., V_{100})$ (à gauche) et de $(M_1, M_2, ..., M_{100})$ (à droite) pour a=1

Partie 3. Consistance de ces estimateurs

Dans les parties précédentes, nous avons montré que (V_n) convergeait « plus vite » vers a que (M_n) . Nous allons maintenant étudier la sensibilité de ces estimateurs à une perturbation, en supposant que la première mesure (X_1) est erronée.

Nous supposons donc toujours que les variables aléatoires X_i sont mutuellement indépendantes, mais nous supposons maintenant que :

- X_1 suit la loi uniforme sur [0, 2a]
- si $i \ge 2$, X_i suit la loi uniforme sur [0, a] (comme précédemment).

On considère toujours, pour tout entier $n \ge 1$:

$$V_n = \max(X_1, ..., X_n) \text{ et } M_n = 2\overline{X}_n = \frac{2}{n}(X_1 + \cdots + X_n)$$

19. Soit $n \in \mathbb{N}^*$. Pour tout réel t de]a, 2a], montrer que :

$$\mathbb{P}(V_n \le t) = \frac{t}{2a}$$

- 20. Pour $n \in \mathbb{N}^*$, déterminer la fonction de répartition de V_n . La suite de variables aléatoires $(V_n)_{n\geq 1}$ converge-t-elle en loi ?
- 21. Calculer $\mathbb{P}\left(V_n > \frac{3}{2}a\right)$.

L'estimateur V_n est-il toujours convergent?

On pose pour tout entier naturel n supérieur ou égal à $2: M'_n = \frac{2}{n-1}(X_2 + \dots + X_n)$ On rappelle que la suite $(M'_n)_{n\geq 2}$ converge en probabilité vers a.

- 22. Pour tout entier naturel n supérieur ou égal à 2, exprimer M_n en fonction de X_1 , M_n' et n.
- 23. En déduire que pour tout entier naturel *n* supérieur ou égal à 2 :

$$|M_n - a| \le \frac{3a}{n} + |M'_n - a|$$

Soit $\varepsilon > 0$ et soit n_0 un entier naturel supérieur ou égal à 2 tel que $\frac{3a}{n_0} < \varepsilon$.

24. Pour tout entier n vérifiant $n \geq n_0$, comparer les événements :

$$[|M_n'-a|<\varepsilon]$$
 et $[|M_n-a|<2\varepsilon]$

- 25. La suite de variables aléatoires $(M_n)_{n\geq 2}$ converge-t-elle en probabilité vers a ?
- 26. Commenter les résultats de cette partie à partir des parties précédentes.

