

CENTRE SCOLAIRE OZANAM

Internat et externat pour lycéens et étudiants - Etudes encadrées et soutien scolaire - Stages intensifs de révision 60 rue Vauban 69006 LYON 204 78 52 27 99 / Fax : 04 78 52 11 15 contact@ozanam-lyon.fr www.ozanamlyon.fr

Concours BCE : Epreuve de Mathématiques (option Economique) Conception EDHEC : 4 mai 2021

Exercice 1

Soit f la fonction de $\mathbb{R} \times \mathbb{R}$ dans \mathbb{R} définie par :

$$\forall (x, y) \in \mathbb{R} \times \mathbb{R}, f(x, y) = x^3 + y^3 - 3xy$$

Partie 1

- 1. Justifier que f est une fonction de classe C^2 sur \mathbb{R}^2 .
- 2. Calculer les dérivées partielles d'ordre 1 de f. Déterminer les points critiques de f.
- 3. Calculer les dérivées partielles d'ordre 2 de *f*.

 Vérifier que *f* ne présente un extremum local qu'en un seul de ses points critiques et préciser sa nature et sa valeur.
- 4. Cet extremum est-il global?

Partie 2

On note g la fonction de $\mathbb R$ dans $\mathbb R$ définie par :

$$\forall x \in \mathbb{R}, g(x) = f(x, 1)$$

5. Montrer que, pour tout entier naturel n supérieur ou égal à 4, l'équation g(x) = n, d'inconnue x, possède une unique solution que l'on notera u_n .

On note h la restriction de g à $[1, +\infty[$.

- 6. Dresser le tableau de variations de h^{-1} .
- 7. Calculer $\lim_{n\to+\infty} u_n$.
- 8. En déduire, en revenant à la définition de u_n , le réel α pour lequel on a : $u_n \underset{n \to +\infty}{\sim} n^{\alpha}$.

Exercice 2

Toutes les variables aléatoires rencontrées dans cet exercice sont supposées définies sur un espace probabilisé (Ω, \mathcal{A}, P) que l'on ne cherchera pas à déterminer.

- 1. Vérifier que la fonction f qui à tout réel x associe $f(x) = \begin{cases} \frac{2}{x^3} \exp\left(-\frac{1}{x^2}\right) & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}$ peut être considérée comme une densité d'une certaine variable aléatoire Y.
- 2. On note F la fonction de répartition de Y. Déterminer F(x) selon que x > 0 ou $x \le 0$.
- 3. Vérifier que la fonction g qui à tout réel x associe $g(x) = \begin{cases} \frac{2}{x^3} & \text{si } x \ge 1 \\ 0 & \text{si } x < 1 \end{cases}$ peut être considérée comme une densité d'une certaine variable aléatoire X.
- 4. On note *G* la fonction de répartition de *X*. Déterminer G(x) selon que $x \ge 1$ ou x < 1.

On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires mutuellement indépendantes, et suivant toutes la même loi que X.

Pour tout entier naturel n non nul, on pose $M_n = \max(X_1, ..., X_n)$ et on admet que M_n est une variable aléatoire à densité, définie elle aussi sur l'espace probabilisé (Ω, \mathcal{A}, P) . On note G_n la fonction de répartition de M_n .

5. On note G_n la fonction de répartition de M_n . Exprimer $G_n(x)$ à l'aide de la fonction G puis en déduire explicitement $G_n(x)$ en fonction de x.

On pose : $Y_n = \frac{M_n}{\sqrt{n}}$

6. Justifier que la fonction de répartition F_n de Y_n , est donnée par :

$$\forall x \in \mathbb{R}, F_n(x) = \begin{cases} \left(1 - \frac{1}{nx^2}\right)^n & \text{si } x \ge \frac{1}{\sqrt{n}} \\ 0 & \text{si } x < \frac{1}{\sqrt{n}} \end{cases}$$

- 7. Déterminer, pour tout réel x négatif ou nul, la limite de $F_n(x)$ lorsque n tend vers $+\infty$.
- 8. Soit x un réel strictement positif. Vérifier que, dès que n est supérieur strictement à la partie entière de $\frac{1}{x^2}$, on a $F_n(x) = \left(1 \frac{1}{nx^2}\right)^n$
 - 9. Donner un équivalent de $\ln(1+u)$ lorsque u est au voisinage de 0, puis en déduire, pour tout réel x strictement positif, la limite de $F_n(x)$ lorsque n tend vers $+\infty$.
 - 10. Conclure que la suite $(Y_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire dont la loi est celle de Y.

Exercice 3

On considère un nombre réel a élément de]0,1[et l'endomorphisme f_a de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est $M_a = \begin{pmatrix} 1 & 0 & 0 \\ 1-a & a & 0 \\ 0 & 1-a & a \end{pmatrix}$.

- 1. Donner les valeurs propres de M_a .
- 2. Déterminer les sous-espaces propres associés à ces valeurs propres.
- 3. En déduire que M_a n'est pas diagonalisable.

On pose
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 et on note E l'espace vectoriel engendré par I , M_a et M_a^2 .

4. Quelle est la dimension de *E* ?

On pose :
$$J = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
 et $K = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

- 5. Calculer JK^2 puis en déduire $(M_a I)(M_a aI)^2$.
- 6. En déduire que M_a^3 appartient à E.
- 7. Montrer que, pour tout entier naturel n, il existe un unique triplet de réels (u_n, v_n, w_n) tel que :

$$\forall n \in \mathbb{N}, M_a^n = u_n, M_a^2 + v_n M_a + w_n I$$

On donnera les valeurs de u_0 , v_0 et w_0 et on écrira les relations liant u_{n+1} , v_{n+1} , w_{n+1} à u_n , v_n et w_n .

11. En utilisant les relations précédentes, expliquer pourquoi le script Scilab qui suit ne permet pas de calculer et d'afficher les valeurs de u_n , v_n et w_n lorsque net a sont entrés par l'utilisateur. On pourra examiner attentivement la boucle « for ».

```
n=input('entrez une valeur pour n:')
a=input('entrez une valeur pour a:')
u=0
v=0
w=1
for k=1:n
u=(2*a+1)*u+v
v=-a*(a+2)*u+w
w=a*a*u
end
disp(w,v,u)
```

- 12. Modifier la boucle de ce script en conséquence.
- 13. Montrer que : $\forall n \in \mathbb{N}$, $u_{n+3} = (2a+1)u_{n+2} a(a+2)u_{n+1} + a^2u_n$

On **admet** que l'on peut en déduire u_n , pour tout entier naturel n, sous la forme :

$$u_n = \frac{(n-1)a^n - na^{n-1} + 1}{(a-1)^2}$$

On dit qu'une suite de matrices $(A_n)_{n\in\mathbb{N}}$ tend vers la matrice A lorsque n tend vers $+\infty$ si chaque coefficient de A_n tend vers le coefficient situé à la même place dans A.

Il en résulte (et on admet ce résultat) que :

$$\lim_{n \to +\infty} M_a^n = \left(\lim_{n \to +\infty} u_n\right) M_a^2 + \left(\lim_{n \to +\infty} v_n\right) M_a + \left(\lim_{n \to +\infty} w_n\right) I.$$

- 14. Déterminer $\lim_{n\to+\infty}u_n$, puis $\lim_{n\to+\infty}v_n$ et $\lim_{n\to+\infty}w_n$.
- 15. En déduire la limite L_a , lorsque n tend vers $+\infty$, de la suite $(M_a^n)_{n\in\mathbb{N}}$.
- 16. Vérifier que $L_a^2 = L_a$.

On note φ_a l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est L_a .

- 17. Montrer que:
 - $\forall x \in \text{Ker}(f_a Id), \varphi_a(x) = x$
 - $\forall x \in \operatorname{Im}(f_a Id), \varphi_a(x) = 0$

Problème

On dispose de deux pièces identiques donnant pile avec la probabilité p, élément de]0,1[, et face avec la probabilité q=1-p.

Partie 1. Un jeu naïf

Deux joueurs A et B s'affrontent lors de lancers de ces pièces de la façon suivante, Les lancers de chaque pièce étant supposés indépendants :

Pour la première manche, *A* et *B* lancent chacun leur pièce simultanément jusqu'à ce qu'ils obtiennent pile, le gagnant du jeu étant celui qui a obtenu pile le premier. En cas d'égalité et en cas d'égalité seulement, les joueurs participent à une deuxième manche dans les mêmes conditions et avec la même règle, et ainsi de suite jusqu'à la victoire de l'un d'entre eux.

Pour tout k de \mathbb{N}^* , on note X_k (resp. Y_k) la variable aléatoire égale au rang d'obtention du 1er pile par A (resp. par B) lors de la k-ième manche.

On note, toujours pour k dans \mathbb{N}^* , E_k l'événement : « Il y a égalité à la fin de la k-ième manche ». On note E l'événement : « Il y a perpétuellement égalité ».

On note G (resp. H) l'événement :« A (resp. B) gagne à ce jeu », et pour tout entier naturel n non nul, on note G_n (resp. H_n) l'événement : « A (resp. B) gagne le jeu à la n-ième manche ».

Étude de la première manche.

- 1. Donner la loi commune à X_1 et Y_1 . En déduire qu'il est quasi-impossible que la première manche dure éternellement. On admet alors qu'il en est de même pour chaque manche jouée.
- 2. Écrire l'événement E_1 à l'aide des variables X_1 et Y_1 .
- 3. Montrer que $P(E_1) = \sum_{i=1}^{+\infty} P(X_1 = i) P(Y_1 = i)$ et en déduire l'expression explicite de $P(E_1)$ fonction de p et q.
- 4. Justifier sans aucun calcul que les événements G_1 et H_1 sont équiprobables. En déduire la probabilité de G_1 en fonction de p et q.

Calcul de la probabilité de l'événement G

- 5. Écrire, pour tout entier naturel n supérieur ou égal à 2, l'événement G_n à l'aide des événements E_k et de l'événement $(X_n < Y_n)$.
- 6. Pour tout entier k supérieur ou égal à 2, calculer $P_{E_{1 \cap ... \cap E_{k-1}}}(E_k)$ puis en déduire :

$$\forall n \ge 2, P(G_n) = \left(\frac{p}{1+q}\right)^{n-1} \frac{q}{1+q}$$

- 7. Vérifier que le résultat précédent reste valable pour n = 1.
- 8. Exprimer G en fonction des G_n puis conclure, après calcul, que : $P(G) = \frac{1}{2}$.
- 9. Expliquer comment obtenir la probabilité de l'événement H: « B gagne à ce jeu » et en déduire que ce jeu a presque sûrement une fin, c'est-à-dire que P(E) = 0.

Partie 2. Un autre jeu

En parallèle du jeu précédent, *A* parie sur le fait que la manche gagnée par le vainqueur le sera par un lancer d'écart et *B* parie le contraire.

10. À l'aide du système complet d'événements $(X_1=i)_{i\in\mathbb{N}^*}$, montrer que :

$$P(Y_1 = X_1 + 1) = \frac{pq}{1+q}$$

En déduire la probabilité u que l'un des deux joueurs gagne à la première manche par un lancer d'écart.

- 11. Utiliser les événements E_k pour écrire l'événement K_n « l'un des deux joueurs gagne à la n-ième manche par un lancer d'écart », ceci pour tout n de \mathbb{N}^* .
 - En déduire, pour tout entier naturel n non nul, la valeur de $P(K_n)$.
- 12. Donner finalement la probabilité de l'événement K: « A gagne ce pari ».

Partie 3. Informatique

On rappelle que la commande grand(1,1,'geom',p) permet à Scilab de simuler une variable aléatoire suivant la loi géométrique de paramètre *p*.

Compléter le script Scilab suivant pour qu'il simule l'expérience décrite dans la partie 1 et affiche le nom du vainqueur du premier jeu ainsi que le numéro de la manche à laquelle il a gagné.

13. Compléter la commande suivante afin qu'une fois ajoutée au script précédent elle permette de simuler le deuxième jeu et d'en donner le nom du vainqueur.

```
if ----- then disp('A gagne le deuxième jeu') else ----- end
```